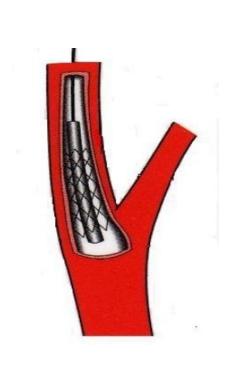
# ACST-2: Randomised trial of stenting vs surgery for asymptomatic severe carotid artery stenosis

Alison Halliday

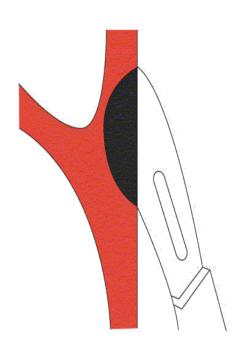
Nuffield Department of Population Health (NDPH)

University of Oxford, UK

for the ACST-2 collaborators


#### Declaration of interest

- I have nothing to declare


## ACST-2 is published online in *The Lancet* on 29 Aug 2021, with immediate open access

All authors declare no conflicts of interest

# ACST-2: trial in 3625 patients of carotid artery <u>stenting</u> (CAS) vs carotid artery <u>surgery</u> (CEA: "endarterectomy")







ESC CONGRESS 2021
THE DIGITAL EXPERIENCE

## Background on asymptomatic patients with severe carotid stenosis

**Surgery** restores patency, and trials show it ~halves later stroke rates. But, modern medical therapy also ~halves long-term stroke rates.

**Stenting** also restores patency, and in recent<u>nationwide registry</u> data CAS and CEA each have  $\sim 1\%$  risk of causing disabling stroke or death.

#### in-nospital "CAS/CEA risks in asymptomatic patients

**Stenting Surgery** 18,000 CAS 86,000 CEA

Disabling stroke or death: 0.7% 0.7%

Any stroke or death: 1.8% 1.4%

NB In-hospital stroke risks were <u>not</u> affected by gender, or by age.

ESC CONGRESS 2021
THE DIGITAL EXPERIENCE

CAS vs CEA: why do we *also* need *randomised* evidence?

Large, representative registries can assess procedural hazards, and determine reliably whether they depend on gender or age.

But, registries cannot reliably compare long-term <u>non-procedural</u> stroke rates; for this, *large-scale randomised evidence* is required.

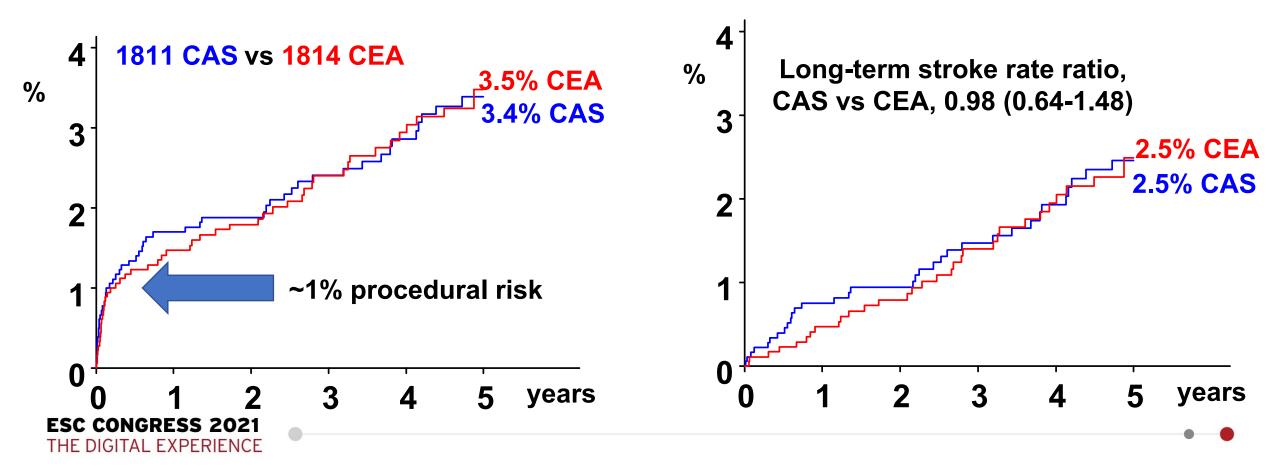


- Randomised trial in 130 hospitals (mostly European), each with a collaborating vascular surgeon, interventionist, and stroke doctor

- Collaborators used their normal procedures, with, for stenting, any CE-approved devices and double anti-platelet therapy.

- <u>Severe</u> carotid artery stenosis (≥60% on ultrasound), with no recent ipsilateral stroke or other symptoms from it

Thought to need a carotid procedure (stenting or surgery),
 but <u>substantially uncertain</u> whether to prefer CAS or CEA


- 3625 patients randomised, half to stenting and half to surgery (70% male, 30% diabetic, mean age 70, mean follow-up 5 years)

- Both groups got good long-term medical treatment, 80-90% with lipid-lowering, anti-thrombotic and anti-hypertensive therapy.

- Strokes were classified by residual disability 6 months afterwards (defining a "disabling" stroke as modified Rankin Score [mRS] 3-5).

## ACST-2: carotid stenting (CAS) vs surgery (CEA) 5-year risk of procedural death, or of disabling or fatal stroke

Left: Including procedural risks, Right: Excluding procedural risks



## ACST-2: carotid stenting (CAS) vs surgery (CEA) Severity of worst procedural event & worst non-procedural stroke

|                    | Procedural (<30 days)<br>stroke or death |                         | Non-procedural stroke (with mean 5-year FU) |                          |  |  |
|--------------------|------------------------------------------|-------------------------|---------------------------------------------|--------------------------|--|--|
|                    | Allocated CAS<br>n=1811                  | Allocated CEA<br>n=1814 | Allocated CAS<br>n=1748*                    | Allocated CEA<br>n=1767* |  |  |
| Disabling or fatal | 15 (0.9%) <sup>†</sup>                   | 18 (1.0%)†              | 44 (2.5%)                                   | 45 (2.5%)                |  |  |
| Non-disabling      | 48 (2.7%)                                | 29 (1.6%)               | 47 (2.7%)                                   | 34 (1.9%)                |  |  |

<sup>\*</sup> Excludes the 63 CAS vs 47 CEA patients who had a procedural stroke or death

<sup>†</sup> Includes the 2 CAS vs 6 CEA procedural deaths not involving a stroke

#### Severity of worst procedural event, and worst non-procedural stroke

|                    | Procedural (<30 days) stroke or death |                    |  | Non-procedural stroke (with mean 5-year FU) |                      |                   |  |
|--------------------|---------------------------------------|--------------------|--|---------------------------------------------|----------------------|-------------------|--|
|                    | Allocated CAS<br>n=1811               | Allocate<br>n=1814 |  | Allo                                        | ocated CAS<br>n=1748 | Allocat<br>n=1767 |  |
| Disabling or fatal | 15                                    | 18                 |  |                                             | 44                   | 45                |  |
| Non-disabling:     |                                       |                    |  |                                             |                      |                   |  |
| mRS score 2        | 9                                     | 9                  |  |                                             | 9                    | 5                 |  |
| mRS score 1        | 23                                    | 15                 |  |                                             | 23                   | 17                |  |
| mRS score 0        | 16                                    | 5                  |  |                                             | 15                   | 12                |  |

THE DIGITAL EXPERIENCE

### ACST-2: carotid stenting (CAS) vs surgery (CEA) Any procedural death or any stroke at any time, by severity

Allocated CAS Allocated CEA n=1811 n=1814

mRS >1: Fatal, disabling, or unable to carry out some previously usual activities

77

77

mRS 0-1: Non-disabling, and still able to carry out all previously usual activities

77

(4.2%)

49

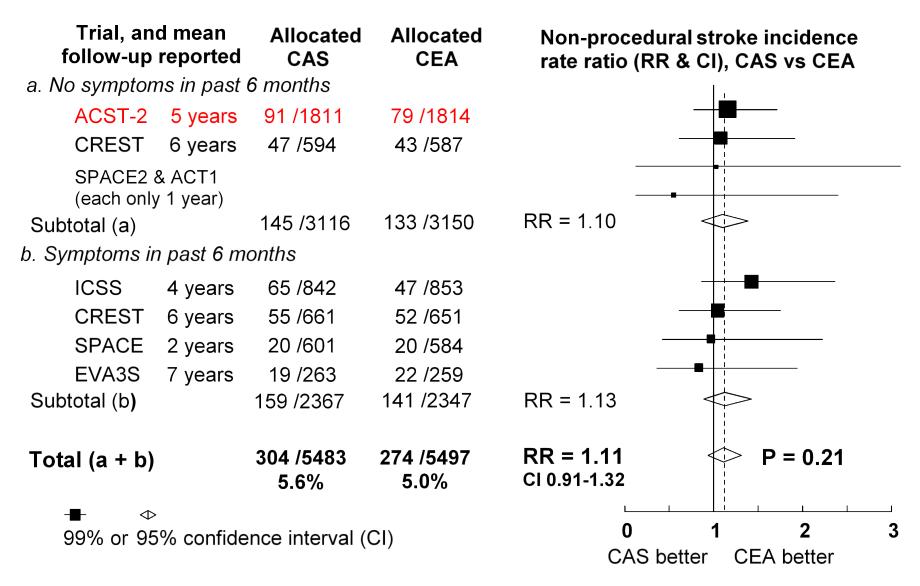
(2.7%)

3625 patients with severe stenosis but no recent ipsilateral symptoms, half allocated CAS, half CEA; good compliance, and good medical therapy.

#### **Summary of results**

1% 30-day risk, in each group, of *procedural death or disabling stroke*; 2.5% 5-year risk, in each group, of *non-procedural disabling/fatal stroke*.

But, with stenting, there was a 1-2% excess risk of *non-disabling stroke* that left patients still able to carry out all their previously usual activities.


### Stenting vs surgery: ACST-2 results plus other evidence

<u>Procedural</u> strokes: An excess of non-disabling procedural strokes from stenting is consistent with large, recent, nationally representative registry data.

Non-procedural strokes: To compare the effects of CAS vs CEA, ACST-2 should be considered along with all other major trials.

8 major trials of CAS vs CEA, 4 in asymptomatic and 4 in symptomatic patients, have been reported. A <u>formal meta-analysis</u> can combine their findings.

#### Non-procedural stroke incidence in the 8 major trials of CAS vs CEA





For the Total, RR is similar for ipsilateral strokes (131 vs 119) and for other strokes (173 vs 155)

# Conclusions from the German national registry and from ACST-2 and the other major trials of CAS vs CEA

Competent CAS and CEA involve ~1% procedural death or disabling stroke, then have <u>similar</u> effects on long-term rates of fatal or disabling stroke.

For asymptomatic patients with severe stenosis, previous trials showed that, even if good medical treatment is given, CEA ~halves long-term stroke rate.

If so, then in ACST-2, where 0.5% per year had a fatal or disabling stroke with either CAS or CEA, with neither procedure ~1% per year would have done so.

### ACST-2 is published online in *The Lancet* on 29 Aug 2021 with immediate open access

The chief acknowledgements are to the patients who agreed to participate; the collaborating doctors at 130 hospitals in 33 countries who randomised them from 2008-20 and are continuing follow-up until 2026, and trial staff.

ACST-2 has for some years been hosted and funded by Oxford University's Nuffield Department of Population Health (NDPH; Prof Rory Collins).

Current funding is from the MRC/BHF/CRUK core support for the NDPH. Until 2013, funding was from the UK NIHR HTA and BUPA Foundation.