

Ticagrelor vs. Clopidogrel in Stabilized Patients after AMI

: TALOS-AMI trial

A Multicenter, Randomized, Open-label trial

Kiyuk Chang

MD, Ph.D

On behalf of the TALOS-AMI trial investigators

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner had a financial interest/arrangement or affiliation with the organization(s) listed below.

CONSULTING FEES/HONORARIA

Chong Kun Dang Pharm

Medtronic Korea

Edwards Korea

RESEARCH GRANTS

Abbott Korea

Medtronic Korea

Boston Korea

Background

Risks of thrombosis & bleeding after acute myocardial infarction (AMI)

F Rodriguez, RA Harrington. N Engl J Med 2021;384:452-460.

Background

Large-scale data are lacking

on unguided stepwise de-escalation of dual antiplatelet therapy (DAPT) strategy

Potent P2Y12 inhibitor in the acute phase (<30 days after AMI)

Less potent clopidogrel during the maintenance phase

Hypothesis

Study Design

A multicenter, randomized, and open-label study

De-escalation Protocol (ticagrelor to clopidogrel)

Uniform, unguided de-escalation :no PFT, no genotype-guided

After final dose of ticagrelor,
clopidogrel 75mg
without loading dose
(approximately 12 hours from the last
dose of ticagrelor)

Study Organization

CI	Kiyuk Chang	
Steering Committee	Kiyuk Chang, Chan Joon Kim, Mahn-Won Park, Youngkeun Ahn, Min-Chul Kim	
DSMB	Cheol Whan Lee (Chair), Joo-Yong Hahn, Hyeon Woo Yim	
CEAC	Hyun Kuk Kim (Chair), Seung-Woon Rha, Keun Ho Park	
CRO	A-CRO, Seoul, Korea	
Centers	32 centers in Korea	
Sponsor	Chong Keun Dang Pharm, Abbott Vascular, Medtronic, and Boston Scientific	

Study Endpoints: Primary Endpoint

Net adverse clinical events

Composite of cardiovascular death, MI, stroke & BARC bleeding type 2, 3 or 5 from 1 to 12 months after an index PCI

Study Endpoints: Main Secondary Endpoints

Composite of CV death,
MI or stroke (ischemic event)

Composite of BARC bleeding type 2, 3 or 5 (safety)

Composite of CV death, MI, stroke or BARC bleeding type 3 or 5 between 1 and 12 months after an index PCI

Sample size calculation

Expected event rates of the primary endpoint from 1 to 12 months Active control group (ticagrelor+aspirin): 9.35% De-escalation group (clopidogrel+aspirin): 9.59% Non-inferiority margin: 3.0%, Follow-up loss rate 10% 80% power at a one-sided type I error of 5% A total of 2590 patients (1295 per group)

Statistical Analyses

Analyses 01

Primary analysis was performed in the intention-to -treat population.

Analyses 02

If the requirement for noninferiority was met, testing for the superiority was subsequently performed.

Enrollment, Randomization, and Follow-up

ACC.21

Clinical Characteristics

Characteristics	De-escalation (n=1349)	Active Control (n=1348)
Age-yr		
mean±SD	60.1±11.3	59.9±11.4
Female sex - no. (%)	217 (16.1)	237 (17.6)
Hypertension - no. (%)	655 (48.6)	663 (49.2)
Diabetes mellitus – no. (%)	362 (26.8)	369 (27.4)
Clinical Presentation		
STEMI - no. (%)	734 (54.4)	721 (53.5)
NSTEMI- no. (%)	615 (45.6)	627 (46.5)

Lesion and procedural characteristics

Characteristics	De-escalation (n=1349)	Active Control (n=1348)
Access site		
Radial – no. (%)	666 (49.4)	686 (51.0)
Femoral – no. (%)	667 (49.4)	644 (47.8)
Infarct related artery (Culprit)		
LM – no. (%)	21 (1.6)	24 (1.8)
LAD – no. (%)	685 (50.8)	634 (47.1)
Number of treated vessels	1.3±0.6	1.3±0.6
Multivessel treatment		
2 vessels – no. (%)	300 (22.2)	322 (23.9)
3 vessels – no. (%)	71 (5.3)	61 (4.5)
Total stent length of infarct related artery	29.8±13.2	29.6±13.8
Stent diameter of infarct related artery	3.2±0.4	3.2±0.5

Adherence of antiplatelet therapy

Safety of switching from ticagrelor to clopidogrel without loading dose

Within 2 weeks after randomization

De-escalation group

- No death or no stent thrombosis
- Only one case of non-target lesion MI (not related to stent thrombosis) 5 days after switching

Active control group

no ischemic events

Primary Endpoint

Composite of cardiovascular death, MI, stroke and BARC bleeding (type 2,3, or 5)

	Number at risk			
De-escalation	1349	1291	1247	1172
Active control	1348	1273	1191	1099

ACC.21

Main Secondary Endpoints

Composite of cardiovascular death, MI, and stroke Cumulative incidence rate(%) Composite of CV death, MI or stroke 15 Active control De-escalation HR 0.69 (95% CI, 0.42-1.14) p=0.14810 5 12 3 **Months from PCI** Number at risk 1349 1299 1264 1201 De-escalation 1226 1147 1348 1288 **Active control**

Primary & Secondary Outcomes (ITT population)

Variables	De-escalation (n=1349)	Active Control (n=1348)	HR (95% CI)	P value
Composite of BARC (2, 3, or 5)	38 (3.0)	71 (5.6)	0.52(0.35-0.77)	0.001
Compisite of BARC 3 or 5 bleeding	15 (1.2)	28 (2.3)	0.53(0.28-0.99)	0.046
BARC 2	27 (2.1)	50 (3.9)	0.53(0.33-0.85)	0.008
BARC 3	15 (1.2)	28 (2.3)	0.53(0.28-0.99)	0.046
BARC 5	1 (0.1)	0 (0.0)	2.95(0.03-271.44)	0.640
Composite of CV death, MI, stroke or BARC bleeding (type 3 or 5)	36 (2.8)	61 (4.9)	0.58(0.38-0.87)	0.009

Primary & Secondary Outcomes (ITT population)

Variables	De-escalation (n=1349)	Active Control (n=1348)	HR (95% CI)	P value	
All cause death	11 (0.9)	10 (0.8)	1.07(0.45-2.52)	0.877	
CV death	6 (0.5)	6 (0.5)	0.98(0.32-3.03)	0.970	
Any myocardial infarction	12 (1.0)	20 (1.6)	0.59(0.29-1.21)	0.150	
Spontaneous	9 (0.7)	I4 (I.I)	0.64(0.28-1.47)	0.290	
Periprocedural	3 (0.2)	6 (0.5)	0.52(0.13-2.06)	0.354	
Target vessel MI	7 (0.6)	8 (0.7)	0.86(0.31-2.36)	0.764	
Stroke	9 (0.7)	13 (1.0)	0.69(0.29-1.61)	0.389	
Target lesion revascularization	14 (1.1)	9 (0.7)	1.48(0.64-3.42)	0.357	
Target vessel revascularization	17 (1.4)	17 (1.4)	0.97(0.50-1.90)	0.929	
Any revascularization	32 (2.6)	39 (3.2)	0.80(0.50-1.27)	0.342	
Stent thrombosis**	3 (0.2)	3 (0.2)	0.97(0.20-4.80)	0.969	

ACC.21

Subgroup Analysis

ACC.21

Study Limitations

Open-label and not placebo-controlled

Conducted only in South Korea

- Prevalence of CYP2C19 LOF alleles high in Koreans
- Potential of applying this de-escalation strategy to other ethnicities

Incidences of primary endpoints: slightly lower than estimated

■ De-escalation group: 4.6% vs. 9.59% // Active control group: 8.2% vs. 9.35%

Event Rates Comparison of Major De-escalation Trials

	TALOS-AMI	TICO	Twilight-ACS	TROPICAL-ACS	POPular Genetics	HOST-REDUCE- POLYTECH-ACS
De-escalation metho d	A+clopidogrel from 1 month	Ticagrelor mono from 3 months	Ticagrelor mono from 3 months	PFT-guided from 2 weeks	Genotype-guided from 48 h	A+Prasugrel 5mg from 1 month
Primary Ischemic Outcome	1-12 mo incidence of CV death, MI or stroke	1-Yr incidence of CV death, MI,ST or TVR	1-Yr incidence of All-ca use mortality, MI, strok e	1-Yr incidence of CV death, MI or stroke	I-Yr incidence of Vascular death, MI, ST or stroke	1-Yr incidence of CV de ath, MI, ST or stroke
de-escalation	2.1%	1.2%	4.3%	3.0%	2.7%	1.4%
standard	3.1%	2.0%	4.4%	3.0%	3.3%	1.8%
Primary Bleeding Outcome	BARC 2, 3, or 5	TIMI Major + Minor	BARC 2, 3 or 5	BARC 2, 3, or 5	PLATO major + minor	BARC 2, 3, or 5
de-escalation	3.0%	3.6%	4.0%	5.0%	10.1%	2.9%
standard	5.6%	5.5%	7.1%	6.0%	13.1%	5.9%

Sensitivity Analysis

A sensitivity analysis was performed which included <u>a complete case</u> (only for subjects who status was known at 1 year), <u>a best-case</u> (assuming missing subjects of the deescalation group were event free and missing subjects of the active control group had event at 1 year), and <u>a worst case</u> (assuming missing subjects of the de-escalation groups had event and missing subjects of the active control group were event free)

ITT	De-escalation	Active Control
Withdrew consent/ Lost to FU	43	49

	Primary endpoints :Composite of CV death, MI, stroke and BARC bleeding type 2,3, or 5	De-escalation	Active Control	Difference (95% CI)	non-inferiority test, p value	HR (95%CI)	p value	
		n=1306	n=1299					
<u> </u>	complete case (n=2605)	59 (4.7)	104 (8.3)	-3.7(-5.6, -1.7)	<0.001	0.55(0.40-0.75)	<0.001	
		n=1349	n=1348					
	best-case (n=2697)	59 (4.5)	153 (12.0)	-7.5(-9.6, -5.3)	<0.001	0.37(0.28-0.50)	< 0.001	
		n=1349	n=1348					
	a worst-case (n=2697)	102 (7.9)	104 (8.0)	-0.1(-2.2, 2.0)	0.002	0.94(0.72-1.24)	0.675	

Conclusions

In AMI patients who had no major adverse events during the first month after an index PCI, a uniform, unguided de-escalation DAPT strategy switching from ticagrelor to clopidogrel was superior to the ticagrelor-based continuing DAPT strategy in terms of net clinical benefit, with a significant decrease in bleeding risk and

no increase in ischemic risk.

Acknowledgement

I would like to thank patients enrolled, research nurses, study coordinators and participating investigators.

Thank you!