CLOTS-AF Score: un punteggio per identificare i pazienti ad alto rischio di trombosi dell'auricola sinistra in previsione di cardioversione

Background

- Atrial fibrillation (AF) is associated with a 5-fold increased risk of stroke and thromboembolism.
- Left atrial appendage thrombus (LAAT) is a common source of emboli and has been implicated in up to 90% of AF-related strokes.
- To minimize the risk of thromboembolism, guideline-directed anticoagulation is required for 3 weeks before direct cardioversion (DCR) or a preprocedural transesophageal echocardiogram (TEE) is recommended to facilitate an expedited cardioversion.
- LAAT is present in up to 2.7% of patients with AF/atrial flutter (AFL) despite guideline-directed anticoagulation and in up to 23% of patients with inadequate anticoagulation.

Background

- Therefore, identifying patients with a high probability of LAAT and selecting a suitable period of therapeutic anticoagulation rather than early TEE-guided DCR, may minimize the procedural risk to the patient and promote better health care usage by reducing cost and resources associated with TEE.
- The CHA₂DS₂VASc score has been widely adopted to predict stroke risk among the AF population, although the predictive value of 0.67 is relatively modest.
- Prior studies have demonstrated a modest predictive value for the CHA₂DS₂VASc score in determining the presence of LAAT.

ORIGINAL RESEARCH

Identifying Patients at High Risk of Left Atrial Appendage Thrombus Before Cardioversion: The CLOTS-AF Score

```
Louise Segan , MBBS, MPH; Shane Nanayakkara , MBBS, PhD; Ella Spear, MBBS; Anita Shirwaiker , MBBS; David Chieng , MBBS; Sandeep Prabhu, MBBS, PhD; Hariharan Sugumar , MBBS, PhD; Liang-Han Ling , MBBS, PhD; David M. Kaye , MBBS, PhD; Jonathan M. Kalman , MBBS, PhD; Aleksandr Voskoboinik , MBBS, PhD; Peter M. Kistler , MBBS, PhD
```

Aim of the study

The aim of the study was to identify noninvasive clinical and echocardiographic predictors of LAAT and dense spontaneous echo contrast (SEC) in a large population of consecutive patients with AF/AFL undergoing TEE in whom guideline-directed anticoagulation recommendations were not satisfied.

Methods

- Clinical and transthoracic echocardiographic parameters were evaluated to predict LAAT risk in consecutive patients with AF/AFL undergoing TEE before cardioversion between 2002 and 2022.
- Patients referred for TEE on the basis of inadequate anticoagulation or subtherapeutic INR were retrospectively identified from a large tertiary referral center
- Regression analysis identified predictors of LAAT were combined to create the novel CLOTS-AF risk score (comprising clinical and echocardiographic LAAT predictors), which was developed in the derivation cohort (70%) and validated in the remaining 30%.

Methods

The rationale for a TEE-guided approach to cardioversion was attributed to the following reasons:

- an inadequate period of preprocedure systemic anticoagulation defined as <3
 weeks of uninterrupted DOAC or subtherapeutic anticoagulation (INR <2 within
 the 4 weeks before DCR in those on warfarin) in those with AF/AFL lasting >48
 hours or of unclear duration (n=611);
- documented nonadherence with systemic anticoagulation (n=208),
- no systemic anticoagulation (n=104);
- subtherapeutic anticoagulation in the setting of a reported relative contraindication (n=30);
- uncertain or undocumented reasons (n=48).

Baseline characteristics

1001 patients

- mean age 62±13 yrs
- 25% women
- LVEF 49.8±14%

LAAT identified in 140 patients (14%) and dense spontaneous echo contrast precluding cardioversion in a further 75 patients (7.5%)

Baseline characteristics	No LAAT (N=786)	LAAT (N=215)	P value
Age, y	61±13	63±13	0.15
Female, n (%)	195 (25)	57 (27)	0.60
BMI, kg/m ²	29±6	30±7	0.70
Rhythm at TEE			<0.001
AF, n (%)	519 (66)	183 (85)	<0.001
AFL, n (%)	267 (34)	32 (15)	
PsAF duration, d	118±237	216±387	0.005
Anticoagulation <30d, n (%)	241 (57)	116 (62)	0.20
Heart failure, n (%)	205 (26)	119 (55)	<0.001
Prior MI, n (%)	122 (16)	44 (20)	0.084
Creatinine, µmol/L	91±40	108±65	<0.001
OSA, n (%)	65 (8.3)	17 (7.9)	0.90
Diabetes, n (%)	118 (15)	46 (21)	0.025
Obesity (BMI ≥30 kg/m²)	277 (35)	79 (37)	0.70
Hypertension, n (%)	385 (49)	112 (52)	0.40
Hyperlipidemia, n (%)	255 (32)	81 (38)	0.20
Cardiac device, n (%)	52 (6.6)	36 (17)	<0.001
Stroke/TIA, n (%)	34 (4.3)	29 (13.5)	<0.001
PVD, n (%)	24 (3.1)	17 (7.9)	0.001
CHADS ₂ VASc score, mean±SD	1.9±1.4	2.3±1.3	<0.001
CHADS ₂ VASc score ≥2, n (%)	435 (55)	157 (73)	<0.001

Baseline characteristics

Baseline characteristics	No LAAT (N=786)	LAAT (N=215)	P value			
Baseline pharmacotherapy	Baseline pharmacotherapy					
Anticoagulant type			<0.001			
Apixaban, n (%)	155 (19.7)	29 (13.5)				
Dabigatran, n (%)	37 (4.7)	5 (2.3)				
Rivaroxaban, n (%)	117 (15)	23 (10.7)				
Warfarin, n (%)	170 (21.6)	133 (61.9)				
None, n (%)	307 (39)	25 (11.6)				
Beta blocker, n (%)	614 (78)	149 (69)	0.007			
ACEi/ARB/ARNi, n (%)	398 (51)	103 (48)	0.50			
Antiarrhythmics, n (%)	317 (40)	109 (51)	0.006			
MRA, n (%)	96 (12)	26 (12)	0.98			
Furosemide, n (%)	175 (22)	98 (46)	<0.001			

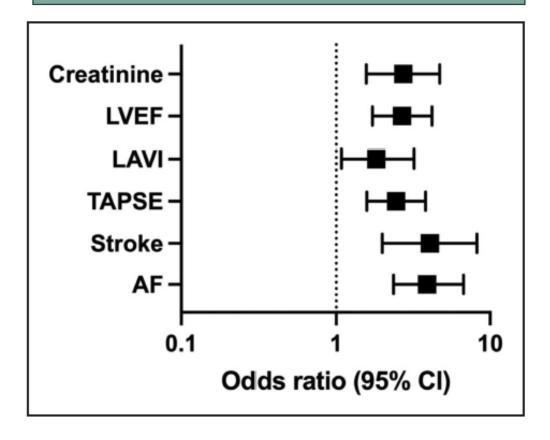
J Am Heart Assoc. 2023;12:e029259.

Baseline Echocardiographic Characteristics

Echocardiographic characteristics	No LAAT (N=786)	LAAT (N=215)	P value
TTE parameters			'
SBP at TTE, mmHg	127±18	121±18	<0.001
LVEF, %	52±14	41±14	<0.001
LV mass, g	194±60	215±74	0.001
LVEDD, mm	51±8	55±16	<0.001
E/e'	11±6	16±9	<0.001
TAPSE, cm	2.0±0.5	1.7±0.5	<0.001
RVSP, mmHg	31±11	35±10	<0.001
LA diameter, mm	44±7	49±9	<0.001
LA area, cm ²	26±6	30±7	<0.001
LAVI, mL/m ²	43±14	55±21	<0.001
RA area, cm/ ²	20.9±5.6	24.3±7.1	<0.001
RA volume, mL	69±38	91±33	<0.001
MR grade, n (%)			<0.001
None	576 (73)	76 (35)	
Mild	134 (17)	96 (45)	
Moderate	68 (8.7)	37 (17)	
Severe	8 (1)	6 (2.8)	
TEE parameters		,	,
Rhythm at TEE			<0.001
AF, n (%)	515 (66)	179 (83)	
AFL, n (%)	271 (34)	36 (17)	
SBP, mmHg	117±17	114±20	0.003
LAA velocity, cm/s	48±19	25±12	<0.001

Univariable Regression

	OR	95% CI	P value
Age	1.002	0.995-1.240	0.112
Female sex	0.982	0.885-1.090	0.611
BMI	1.001	0.993-1.008	0.869
Rhythm			<0.001
AF	1.107	1.061–1.150	
AFL	0.927	0.823-1.043	
PsAF duration	1.22	1.18–1.26	<0.001
Heart failure	1.333	1.218–1.459	<0.001
Hypertension	1.037	0.947–1.135	0.419
Prior MI	1.161	1.028-1.310	0.084
Diabetes	1.143	1.006-1.300	0.025
Stroke	1.359	1.112–1.661	<0.001
TIA	1.153	0.874–1.521	0.027
PVD	1.403	1.104–1.781	0.001
Creatinine	1.001	1.001–1.002	<0.001
CHADS ₂ VASc score	1.098	1.060–1.137	<0.001
CHADS ₂ VASc score ≥2	1.195	1.090-1.309	<0.001
Anticoagulant duration	1.02	0.922-1.130	0.182
Warfarin vs NOAC	1.51	1.340–1.699	<0.001
Rivaroxaban vs other NOAC	1.039	0.918–1.176	0.117
LVEF	0.987	0.983-0.990	<0.001
LAVI	1.007	1.004-1.009	<0.001
LVEDD	1.005	1.001–1.010	<0.001
E/e'	1.019	1.011-1.027	<0.001
LV mass	1.002	1.001–1.003	<0.001
TAPSE	0.965	0.933-0.999	<0.001
RVSP	1.014	1.008-1.020	<0.001

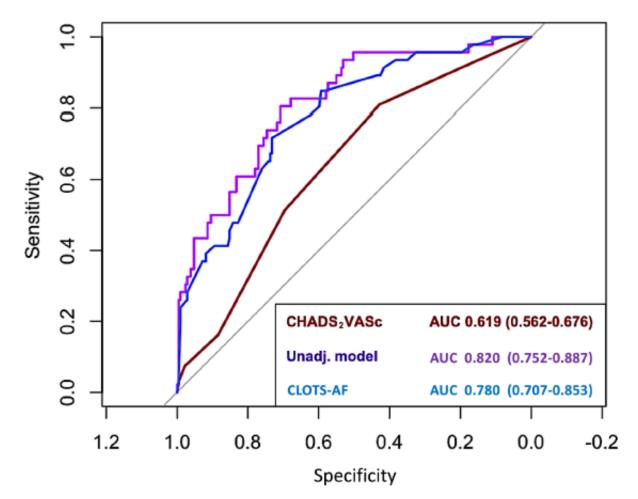

Multivariable Regression

	OR	95% CI	P value		
Clinical parameters					
AF rhythm	1.210	1.049-1.432	<0.001		
PsAF duration	1.000	0.999-1.001	0.344		
Diabetes	1.168	0.806-1.189	0.672		
Stroke	1.432	1.089-1.881	0.002		
Prior MI	0.972	0.898-1.314	0.947		
PVD	1.212	0.910-1.614	0.187		
Creatinine	1.002	1.001–1.003	0.019		
CHADS ₂ VASc score	1.212	0.987–1.378	0.124		
Anticoagulant >30d	0.923	0.800-1.065	0.271		
Anticoagulant type					
Apixaban	0.754	0.563-1.078	0.172		
Dabigatran	0.853	0.658-1.106	0.228		
Rivaroxaban	0.992	0.824-1.195	0.935		
Warfarin	1.173	0.994–1.383	0.059		
Echocardiographic para	ameters				
LVEDV	1.001	0.999-1.003	0.127		
LVEDD	0.997	0.985-1.009	0.075		
LVEF	0.992	0.987-0.997	<0.001		
E/e'	1.005	0.993-1.017	0.882		
LV mass	0.999	0.998-1.001	0.623		
LAVI	1.024	1.006–1.027	<0.001		
TAPSE	0.904	0.753-0.977	<0.001		
RVSP	1.008	0.998–1.015	0.424		

Weighted CLOTS2-AF beta coefficient values

	Covariate	OR	p value	Beta coefficient
С	Creatinine >132	2.724 (1.57-4.70)	< 0.001	1.002
L	LVEF <50	2.68 (1.72-4.20)	< 0.001	0.987
О	Overload (LAVI >34)	1.82 (1.08-3.20)	0.031	0.597
T	TAPSE <17	2.45 (1.58-3.81)	< 0.001	0.896
S	Stroke	4.07 (1.99-8.20)	<0.001	1.403
A F	Atrial fibrillation	3.90 (2.36-6.72)	<0.001	1.361

Odds ratios of component CLOTS-AF covariates


J Am Heart Assoc. 2023;12:e029259.

CLOTS-AF score

CLOTS-AF score			
С	Creatinine Creatinine >1.5mg/dL	2	
L	LV systolic dysfunction	2	
0	Overload LAVI >34ml/m²	1	
Т	TAPSE TAPSE<17mm	2	
S	Stroke	3	
AF	AF rhythm	2	

AUC of unadjusted model and CLOTS-AF risk score (blue) compared with CHADS2VASc score (brown)

- On average, each 1-point increment in the CLOTS-AF risk score was associated with a nearly 2-fold increased risk of LAAT (OR, 1.63 [95% CI, 1.47–1.83]; P<0.001).
- A risk score of ≥6 was considered a statistically significant threshold on Youden's index, with a nearly 6-fold increase in LAAT risk (OR, 5.67 [95% CI, 3.62-9.00]; P<0.001)

Characteristics Among Individuals With LAAT According to Heart Failure Status

- LAAT was present in 119 of 324 (36.7%) patients with heart failure.
- In those with concurrent heart failure, the presence of LAAT was significantly higher among those:
 - inadequately warfarinized compared with DOAC use;
 - in AF;
 - with more advanced cardiac remodeling (lower LV and RV systolic function, increased atrial and ventricular dimensions, and elevated filling parameters),
 - with renal impairment,
 - with a higher CHAD₂S₂VASc score

Predictors of LAAT Resolution

Characteristics	OR	95% CI	P value				
Female sex	0.318	0.091–1.111	0.073				
Age >65 y	0.824	0.258-2.626	0.743				
Rhythm	Rhythm						
AFL	1.490	0.188–2.817	0.321				
PsAF	1.300	0.335-5.053	0.704				
AF duration	0.998	0.996-1.001	0.159				
AF duration >1 y	0.892	0.135–5.913	0.906				
Anticoagulant change	0.378	0.115–1.250	0.111				
Obesity (BMI >30 kg/m²)	1.889	0.641–5.569	0.249				
Hypertension	1.190	0.333-4.254	0.789				
Dyslipidemia	1.163	0.298-4.530	0.828				
Creatinine	0.997	0.991–1.004	0.425				
Prior MI	0.870	0.234–3.240	0.836				
Prior stroke	0.579	0.101–3.305	0.539				
LVEF <50%	1.479	0.593-3.687	0.401				
LAVI >35 mL/m ²	0.941	0.322-2.746	0.912				
Warfarin post TEE	1.731	0.666-4.500	0.260				

- In the LAAT cohort, 94 individuals underwent serial TEE imaging. Of those, anticoagulation had not been commenced before TEE in 13.9%, was of inadequate duration or compliance in 30%, or required TEE in the setting of subtherapeutic INR in 56.1%.
- Thrombus had resolved to enable cardioversion in 59 (63%) at a median of 133 days (IQR, 52–289) after index TEE.
- Despite the presence of LAAT at index TEE, anticoagulant adjustment was uncommon (20%) and did not predict thrombus resolution.
- Clinical and echocardiographic parameters and anticoagulant type did not predict thrombus resolution in this population

Limitations

- The study population is a selected cohort of patients with AF/AFL and inadequate anticoagulation before cardioversion and does not report the true prevalence of LAAT among the general AF/AFL population.
- This was a single-center retrospective analysis of LAAT incidence. External validation would strengthen the predictive power and clarify the application of this risk model to the general AF/AFL population undergoing rhythm control; however, there are no established large-scale databases of this nature to facilitate such an analysis.

Conclusions

- Clinical and noninvasive echocardiographic parameters predicted LAAT among a large population undergoing TEE before DCR for AF/AFL.
- The novel CLOTS-AF score may enhance LAAT risk prediction and help identify patients at higher risk for LAAT in whom a period of therapeutic anticoagulation is more suitable rather than an expedited TEE-guided cardioversion.

Clinical perspective

J Am Heart Assoc. 2023;12:e029259.

What Is New?

- Noninvasive clinical and echocardiographic parameters can predict left atrial appendage thrombus risk in patients with atrial fibrillation/atrial flutter undergoing transesophageal echocardiography—guided direct cardioversion.
- Despite this, there is a distinct lack of a universal risk stratification schema to guide the need for preprocedural transesophageal echocardiographic imaging.
- The CLOTS-AF risk model is readily applied in the clinical context and outperformed the CHADS₂VASc score with regard to left atrial appendage thrombus risk prediction.

What Are the Clinical Implications?

- A novel risk score incorporating noninvasive clinical and echocardiographic parameters may identify high-risk individuals in whom a period of anticoagulation should be initiated rather than undertaking a strategy of early transesophageal echocardiography—guided cardioversion, with a high likelihood of left atrial appendage thrombus.
- External validation could clarify the broader clinical utility of the proposed risk model in diverse populations and clinical settings.