Circulation

ORIGINAL RESEARCH ARTICLE

Development and Validation of the DOAC Score: A Novel Bleeding Risk Prediction Tool for Patients With Atrial Fibrillation on Direct-Acting Oral Anticoagulants

Rahul Aggarwal[®], MD; Christian T. Ruff[®], MD, MPH; Saverio Virdone[®], MSc; Sylvie Perreault[®], BPharm, PhD; Ajay K. Kakkar, MBBS, PhD; Michael G. Palazzolo[®], MPH; Marc Dorais, MSc; Gloria Kayani[®], BSc; Daniel E. Singer[®], MD; Eric Secemsky[®], MD; Jonathan Piccini[®], MD, MHS; Usman A. Tahir, MD, MBI; Changyu Shen[®], PhD; Robert W. Yeh[®], MD, MSc

Background

- When deciding to initiate anticoagulation, clinicians must balance the tradeoffs of decreasing the risk of antithrombotic events against increasing the risk of bleeding.
- The most popular and predictive clinical tool for determining bleeding risk in patients with AF is the HAS-BLED score.
- This risk score, however, has demonstrated limited accuracy in multiple studies and was developed for patients taking warfarin, whereas many patients are now treated with direct-acting oral anticoagulants (DOACs).

AIM of the study

• To develop and validate a clinical risk score to personalize estimates of bleeding risk for individuals with atrial fibrillation taking DOACs.

Methods

- The bleeding risk prediction tool was initially developed in the RE-LY trial (Randomized Evaluation of Long-Term Anticoagulation Therapy) (N=18 113) dabigatran 150 mg group.
- Then, the model was further developed among GARFIELD-AF individuals, because GARFIELD-AF included a large proportion of patients on apixaban and rivaroxaban.
- Finally, external validation was conducted in 2 different cohorts: the COMBINE-AF clinical trial and the RAMQ administrative database.
- The primary outcome was major bleeding at 1 year; the secondary outcome was life-threatening bleeding at 1 year, a subset of major bleeding.

Results

- The final clinical risk prediction scoring system was named the DOAC Score.
- The score consists of 11 final predictors, including age, creatinine clearance/glomerular filtration rate, body mass index, smoking history, stroke/transient ischemic attack/embolism history, diabetes, hypertension, antiplatelet use, and nonsteroidal antiinflammatory use, in addition to bleeding history and liver disease.
- Point assignments were based on the coefficients of the variables in a Cox regression model for the outcome of major bleeding.
- Risk scores were 0 to 10, with risk categories assigned as very low (score 0–3), low (score 4–5), moderate (score 6–7), high (score 8–9), and very high (score 10).
- The maximum number of allocated points for an individual is 10 points. Individuals with scores >10 were assigned a score of 10.

Table 2. DOAC Score

Clinical risk prediction tool						
Age, y						
65–69						
70–74	3					
75–79	4					
≥80	5					
Creatinine clearance/estimated glomerular filtration rate (mL/min)						
30–60						
<30	2					
Underweight (body mass index <18.5 kg/m ²)						
Stroke/transient ischemic attack/embolism history						
Diabetes						
Hypertension						
Antiplatelet use						
Aspirin						
Dual-antiplatelet						
Nonsteroidal anti-inflammatory (NSAID) use						
Bleeding history						
Liver disease*						
Total score range: $0-10$ (Maximum 10 points – individuals with scores ≥ 10 are assigned a score of 10)						

Figure 1. Cumulative incidence for major bleeding outcomes by predicted risk category in the development cohorts: RE-LY (A) and GARFIELD-AF (B).

Figure 2. Cumulative incidence for bleeding outcomes by predicted risk category in the validation cohorts: COMBINE-AF (A) and RAMQ (B).

Results (II)

- The score had superior performance to the HAS-BLED score in RE-LY (C statistic, 0.73 versus 0.60; *P* for difference <0.001) and among 12 296 individuals in GARFIELD-AF (C statistic, 0.71 versus 0.66; *P* for difference = 0.025).
- The DOAC Score had stronger predictive performance than the HAS-BLED score in both validation cohorts, including 25 586 individuals in COMBINE-AF (C statistic, 0.67 versus 0.63; *P* for difference <0.001) and 11 945 individuals in RAMQ (C statistic, 0.65 versus 0.58; *P* for difference <0.001).

Table 3. Predictive Performance of the DOAC Score Compared With HAS-BLED

	N	No. of events	DOAC Score, C statistic (95% CI)	HAS-BLED, C statistic (95% CI)	P value
RE-LY	5684	386	0.72 (0.71–0.74)	0.60 (0.58–0.62)	<0.001
GARFIELD-AF	12296	131	0.71 (0.67–0.75)	0.66 (0.62–0.71)	0.025
COMBINE-AF	25586	692	0.67 (0.64–0.69)	0.63 (0.61–0.65)	<0.001
RAMQ	11945	258	0.65 (0.61–0.68)	0.58 (0.55–0.62)	<0.001

Conclusions

- In this study, the DOAC Score was developed, a novel bleeding risk score to stratify bleeding risk among patients with AF who are prescribed a DOAC.
- The DOAC Score consistently outperformed the HASBLED score in every cohort and was able to stratify patients by levels of bleeding risk across both randomized trials and observational populations.
- Its adoption by clinicians will depend on its endorsement by Atrial Fibrillation Guideline Committees both in the United States and in Europe with global implications.