Coronary Atherosclerotic Precursors of Acute Coronary Syndromes Hyuk-Jae Chang, MD, PhD,^a Fay Y. Lin, MD,^b Sang-Eun Lee, MD, PhD,^a Daniele Andreini, MD, PhD,^c Jeroen Bax, MD, PhD,^d Filippo Cademartiri, MD, PhD,^e Kavitha Chinnaiyan, MD,^f Benjamin J.W. Chow, MD,^g Edoardo Conte, MD,^c Ricardo C. Cury, MD,^h Gudrun Feuchtner, MD,ⁱ Martin Hadamitzky, MD,^j Yong-Jin Kim, MD,^k Jonathon Leipsic, MD,^l Erica Maffei, MD,^m Hugo Marques, MD,ⁿ Fabian Plank, MD,ⁱ Gianluca Pontone, MD, PhD,^c Gilbert L. Raff, MD,^f Alexander R. van Rosendael, MD,^d Todd C. Villines, MD,^o Harald G. Weirich, MD,ⁱ Subhi J. Al'Aref, MD,^b Lohendran Baskaran, MD,^b Iksung Cho, MD,^{a,b,p} Ibrahim Danad, MD,^q Donghee Han, MD,^{a,b} Ran Heo, MD,^r Ji Hyun Lee, MD,^{a,b} Asim Rivzi, MD,^{b,s} Wijnand J. Stuijfzand, MD,^b Heidi Gransar, MSc,^t Yao Lu, MSc,^b Ji Min Sung, PhD,^a Hyung-Bok Park, MD,^a Daniel S. Berman, MD,^t Matthew J. Budoff, MD,^u Habib Samady, MD,^v Leslee J. Shaw, PhD,^v Peter H. Stone, MD,^w Renu Virmani, MD,^x Jagat Narula, MD, PhD,^y James K. Min, MD^b **BACKGROUND** The association of atherosclerotic features with first acute coronary syndromes (ACS) has not accounted for plaque burden. **OBJECTIVES** The purpose of this study was to identify atherosclerotic features associated with precursors of ACS. **METHODS** We performed a nested case-control study within a cohort of 25,251 patients undergoing coronary computed tomographic angiography (CTA) with follow-up over 3.4 ± 2.1 years. Patients with ACS and nonevent patients with no prior coronary artery disease (CAD) were propensity matched 1:1 for risk factors and coronary CTA-evaluated obstructive (\geq 50%) CAD. Separate core laboratories performed blinded adjudication of ACS and culprit lesions and quantification of baseline coronary CTA for percent diameter stenosis (%DS), percent cross-sectional plaque burden (PB), plaque volumes (PVs) by composition (calcified, fibrous, fibrofatty, and necrotic core), and presence of high-risk plaques (HRPs). RESULTS We identified 234 ACS and control pairs (age 62 years, 63% male). More than 65% of patients with ACS had nonobstructive CAD at baseline, and 52% had HRP. The %DS, cross-sectional PB, fibrofatty and necrotic core volume, and HRP increased the adjusted hazard ratio (HR) of ACS (1.010 per %DS, 95% confidence interval [CI]: 1.005 to 1.015; 1.008 per percent cross-sectional PB, 95% CI: 1.003 to 1.013; 1.002 per mm³ fibrofatty plaque, 95% CI: 1.000 to 1.003; 1.593 per mm³ necrotic core, 95% CI: 1.219 to 2.082; all p < 0.05). Of the 129 culprit lesion precursors identified by coronary CTA, three-fourths exhibited <50% stenosis and 31.0% exhibited HRP. ACS = acute coronary syndrome; CAD = coronary artery disease; CDCC = The Clinical and Data Coordinating Center; CTA = computed to-mography angiography; ICONIC = Incident COroNary Syndromes Identified by Computed Tomography; MACE = major adverse cardiac event. | TABLE 1 Coronary CTA Findings in Patient-Level Analysis | | | | | | | | |---|-------------------------------------|-------------------------------------|---------|--|--|--|--| | Atherosclerotic Feature | ACS
(n = 234) | Control
(n = 234) | p Value | | | | | | Number of total lesions | 3.9 (2.5) | 3.7 (2.7) | 0.400 | | | | | | %DS | 44.2 ± 26.4 | $\textbf{33.7} \pm \textbf{22.0}$ | < 0.001 | | | | | | %DS ≥50% | 81 (34.6) | 45 (19.2) | < 0.001 | | | | | | %DS ≥70% | 30 (12.8) | 12 (5.1) | 0.007 | | | | | | Area stenosis, % | 61.9 ± 27.2 | $\textbf{51.2} \pm \textbf{27.9}$ | < 0.001 | | | | | | Minimum luminal area, mm ² | 2.3 ± 2.1 | 2.6 ± 1.9 | 0.014 | | | | | | Minimum luminal diameter, mm | 1.3 ± 0.7 | 1.5 ± 0.6 | 0.004 | | | | | | CAD severity by number of vessels | | | 0.020 | | | | | | None | 15 (6.4) | 34 (14.5) | | | | | | | Nonobstructive (≤50% DS) | 104 (44.4) | 91 (38.9) | | | | | | | 1-vessel disease | 69 (29.5) | 59 (25.2) | | | | | | | 2-vessel disease | 25 (10.7) | 21 (9.0) | | | | | | | 3-vessel/left main disease | 21 (9.0) | 29 (12.4) | | | | | | | Total plaque volume, mm ³ | $\textbf{289.7} \pm \textbf{308.4}$ | 267.2 ± 285.7 | 0.321 | | | | | | Calcified, mm ³ | 97.7 ± 136.1 | $\textbf{109.3} \pm \textbf{164.0}$ | 0.389 | | | | | | Fibrous, mm ³ | 126.8 ± 131.6 | 112.3 ± 119.3 | 0.137 | | | | | | FF, mm ³ | $\textbf{58.7} \pm \textbf{85.8}$ | $\textbf{41.4} \pm \textbf{62.2}$ | 0.009 | | | | | | NC, mm ³ | $\textbf{6.5} \pm \textbf{14.0}$ | $\textbf{4.2} \pm \textbf{8.8}$ | 0.026 | | | | | | FF + NC, mm ³ | 65.2 ± 95.4 | $\textbf{45.6} \pm \textbf{68.8}$ | 0.008 | | | | | | Noncalcified, mm ³ | 192.0 ± 207.8 | 157.9 \pm 173.6 | 0.030 | | | | | | Composition by % vessel volume | | | | |--------------------------------------|-----------------|---------------------------------|---------| | % Calcified | 4.1 ± 5.9 | 4.5 ± 6.2 | 0.709 | | % Fibrous | 5.2 ± 4.6 | 4.5 ± 6.2 | 0.067 | | % FF | 2.3 ± 3.0 | 1.7 ± 2.5 | 0.011 | | % NC | 0.3 ± 0.7 | 0.2 ± 0.4 | 0.039 | | % FF + NC | 2.6 ± 3.5 | 1.9 ± 2.7 | 0.012 | | % Noncalcified volume | 7.8 ± 7.2 | 6.5 ± 6.7 | 0.020 | | Mean plaque burden, % | 11.9 ± 10.9 | 11.0 ± 10.7 | 0.152 | | Max cross-sectional plaque burden, % | 66.1 ± 25.8 | $\textbf{56.5}\pm\textbf{28.7}$ | < 0.001 | | Diffuseness, % | 25.8 ± 19.4 | 22.3 ± 19.2 | 0.030 | | Adverse plaque characteristics | | | | | Bifurcation, no. of lesions | 2.3 ± 1.6 | 2.1 ± 1.7 | 0.218 | | Tortuous vessels, no. of lesions | 0.08 ± 0.34 | 0.05 ± 0.28 | 0.477 | | High-risk plaque present | 122 (52.1) | 78 (33.3) | 0.003 | | Low-attenuation plaque present | 101 (43.2) | 64 (27.4) | < 0.001 | | Positive remodeling present | 205 (87.6) | 187 (79.9) | 0.026 | | Spotty calcification present | 72 (30.8) | 47 (20.1) | 0.013 | Values are n (%) or mean \pm SD. ACS = acute coronary syndrome; CAD = coronary artery disease; CTA = computed tomography angiography; DS = diameter stenosis; FF = fibrofatty; NC = necrotic core. **TABLE 2** Per-Patient Multivariate Marginal Cox Model Predicting Acute Coronary Syndrome | Atherosclerotic Feature | HR (95% CI)* | p Value | |---|---------------------|---------| | Highest % diameter stenosis severity, per % | 1.010 (1.005-1.015) | 0.002 | | Presence of ≥50% diameter stenosis | 1.437 (0.948-2.179) | 0.088 | | Presence of ≥70% diameter stenosis | 1.536 (1.141-2.067) | 0.005 | | Plaque volume, per mm ³ | 1.000 (0.999-1.000) | 0.792 | | Calcified | 0.999 (0.998-1.000) | 0.092 | | Fibrous | 1.000 (0.999-1.001) | 0.941 | | FF | 1.002 (1.000-1.004) | 0.048 | | NC | 1.013 (1.003-1.022) | 0.009 | | FF and NC | 1.002 (1.000-1.003) | 0.037 | | Noncalcified | 1.000 (1.000-1.001) | 0.352 | | Mean plaque burden, % | 1.005 (0.997-1.013) | 0.209 | | Max cross-sectional plaque burden, % | 1.008 (1.003-1.013) | 0.003 | | Diffuseness, per % | 1.146 (0.622-2.111) | 0.662 | | High-risk plaque present | 1.593 (1.219-2.082) | 0.001 | | Low-attenuation plaque present | 1.378 (1.051-1.805) | 0.020 | | Positive remodeling present | 1.401 (0.955-2.056) | 0.085 | | Spotty calcification present | 1.543 (1.169-2.037) | 0.002 | ^{*}Adjusted for angina severity and interval revascularization. CI = confidence interval; HR = hazard ratio; other abbreviations as in Table 1. TABLE 3 Lesion-Level Analysis for Identification of Culprit Lesion Precursors | | Culprit Lesion
Precursor | in Patients with ACS in | | | Within-Patient Nonculprit With Highest %DS in Patients With ACS (n = 118)* | | | Between-Patient
Lesion With Highest %DS in
Control Patients (n = 129) | | | |--------------------------------|-----------------------------|-------------------------|------------------------|---------|--|------------------------|---------|---|------------------------|---------| | | (n = 129) | | HR† (95% CI) | p Value | | HR† (95% CI) | p Value | | HR† (95% CI) | p Value | | %DS | 38.27 ± 20.97 | 26.23 ± 18.02 | 1.023
(1.015-1.031) | <0.001 | 42.64 ± 22.23 | 1.002
(0.994-1.011) | 0.612 | 37.04 ± 20.63 | 1.001
(0.992-1.010) | 0.898 | | %DS ≥50% | 32 (24.81) | 41 (6.68) | 2.813
(1.736-4.558) | <0.001 | 31 (26.27) | 1.256
(0.796-1.982) | 0.328 | 27 (20.93) | 1.086
(0.682-1.729) | 0.727 | | %DS ≥70% | 6 (4.65) | 11 (1.25) | 1.717
(0.678-4.350) | 0.254 | 11 (9.32) | 0.607
(0.227-1.622) | 0.319 | 8 (6.20) | 0.684
(0.268-1.746) | 0.427 | | Lesion length, mm | 35.90 ± 21.66 | 23.71 ± 15.90 | 1.021
(1.013-1.029) | < 0.001 | 30.55 ± 17.63 | 1.010
(1.001-1.018) | 0.029 | 29.36 ± 21.71 | 1.004
(0.997-1.011) | 0.225 | | Plaque volume, mm ³ | 134.4 ± 141.50 | 61.75 ± 113.07 | 1.002
(1.001-1.003) | <0.001 | 103.44 ± 160.55 | 1.001
(1.000-1.002) | 0.030 | 107.11 ± 125.80 | 1.000
(0.999-1.002) | 0.590 | | Calcified | 44.88 ± 60.29 | 21.18 ± 45.78 | 1.004
(1.001-1.006) | 0.002 | 35.0 ± 56.89 | 1.002
(1.000-1.004) | 0.077 | 51.07 ± 83.89 | 0.998
(0.996-1.001) | 0.137 | | Fibrous | 58.22 ± 62.39 | 27.49 ± 46.47 | 1.005
(1.002-1.007) | <0.001 | 44.38 ± 60.78 | 1.002
(0.999-1.005) | 0.108 | 39.31 ± 47.11 | 1.002
(0.999-1.005) | 0.154 | | FF | 28.47 ± 50.18 | 11.99 ± 34.08 | 1.007
(1.003-1.010) | <0.001 | 21.71 ± 55.67 | 1.003
(0.999-1.007) | 0.124 | 14.80 ± 26.29 | 1.006
(1.002-1.010) | 0.006 | | NC | 2.85 ± 9.27 | 1.09 ± 4.20 | 1.029
(1.018-1.040) | <0.001 | 2.28 ± 6.86 | 1.014
(1.001-1.027) | 0.042 | 1.75 ± 4.71 | 1.012
(1.002-1.022) | 0.021 | | FF and NC | 31.32 ± 55.5 | 13.08 ± 37.28 | 1.006
(1.003-1.009) | <0.001 | 23.99 ± 60.5 | 1.003
(0.999-1.007) | 0.119 | 16.55 ± 29.96 | 1.005
(1.001-1.008) | 0.006 | | Noncalcified | 89.51 ± 107.36 | 40.55 ± 77.27 | 1.003
(1.002-1.005) | <0.001 | 68.34 ± 114.82 | 1.002
(1.000-1.003) | 0.066 | 55.85 ± 67.15 | 1.002
(1.000-1.004) | 0.042 | | Mean plaque
burden, % | 27.12 ± 13.40 | 19.67 ± 11.5 | 1.045
(1.032-1.059) | < 0.001 | 24.52 ± 11.36 | 1.028
(1.011-1.045) | 0.001 | 25.42 ± 14.75 | 1.003
(0.989-1.017) | 0.680 | | Max plaque
burden, % | 62.54 ± 22.38 | 50.70 ± 20.38 | 1.027
(1.018-1.035) | <0.001 | 63.24 ± 21.31 | 1.008
(1.000-1.016) | 0.050 | 57.84 ± 27.83 | 1.003
(0.996-1.010) | 0.415 | | High-risk plaque | 40 (31.01) | 95 (19.83) | 1.954
(1.317-2.899) | 0.001 | 36 (30.51) | 1.239
(0.841-1.827) | 0.279 | 23 (17.83) | 1.542
(1.105-2.153) | 0.011 | | Low-attenuation plaque | 31 (24.03) | 68 (14.20) | 1.805
(1.198-2.721) | 0.005 | 28 (23.73) | 1.085
(0.696-1.693) | 0.718 | 22 (17.05) | 1.223
(0.840-1.780) | 0.294 | | Positive remodeling | 99 (76.74) | 379 (79.12) | 1.048
(0.675-1.628) | 0.835 | 87 (73.73) | 1.202
(0.743-1.946) | 0.453 | 73 (56.59) | 2.031
(1.306-3.160) | 0.002 | | Spotty calcification | 23 (17.83) | 62 (12.94) | 1.702
(1.064-2.722) | 0.026 | 18 (15.25) | 1.506
(0.955-2.375) | 0.078 | 13 (10.08) | 1.763
(1.241-2.503) | 0.002 | Values are mean ± SD or n (%), unless otherwise indicated. *Eleven patients had measurements only for the culprit lesion and lacked a within-patient comparator. †Adjusted for angina severity and interval revascularization. Abbreviations as in Tables 1 and 2. ## PER LESION PRECURSORS OF ACUTE CORONARY SYNDROME CULPRITS AND NONCULPRITS (A) Adjudicated first ACS cases with coronary CTA measurements (n = 234) of a nested case-control cohort of 25,251 patients undergoing coronary CTA exhibit elevated fibrofatty and necrotic core volumes (65.2 \pm 95.4 mm³); 34.6% exhibit diameter stenosis \geq 50%, and 52.1% exhibit high-risk plaque. (B) Nonevent control subjects propensity matched by demographics, risk factors, and number of obstructive vessels by coronary CTA exhibit lesser fibrofatty and necrotic core volumes (45.6 \pm 68.8, multivariate adjusted p = 0.008) with no difference in calcified or total plaque volumes (p = NS for all); %DS and HRP are significantly decreased in control patients (p < 0.05 for all). (C) Culprit lesion precursors exhibit elevated fibrofatty and necrotic core volumes (31.32 \pm 55.5 mm³). (D) Within-patient controls, using the nonculprit with the highest baseline %DS, exhibit lesser total plaque and necrotic core volumes (p < 0.05 for both). (E) Between-patient controls, using the lesion with the highest %DS in the control patient, exhibit lesser non-calcified plaque components (p = 0.04), but no decrease in calcified plaque volume (p = NS). ACS = acute coronary syndrome; coronary CTA = coronary computed tomographic angiography; %DS = percent diameter stenosis; HRP = high-risk plaque; NS = nonsignificant. ## PER PATIENT PRECURSORS OF ACUTE CORONARY SYNDROME (A) Adjudicated first ACS cases with coronary CTA measurements (n = 234) of a nested case-control cohort of 25,251 patients undergoing coronary CTA exhibit elevated fibrofatty and necrotic core volumes (65.2 \pm 95.4 mm³); 34.6% exhibit diameter stenosis \geq 50%, and 52.1% exhibit high-risk plaque. (B) Nonevent control subjects propensity matched by demographics, risk factors, and number of obstructive vessels by coronary CTA exhibit lesser fibrofatty and necrotic core volumes (45.6 \pm 68.8, multivariate adjusted p = 0.008) with no difference in calcified or total plaque volumes (p = NS for all); %DS and HRP are significantly decreased in control patients (p < 0.05 for all). (C) Culprit lesion precursors exhibit elevated fibrofatty and necrotic core volumes (31.32 \pm 55.5 mm³). (D) Within-patient controls, using the nonculprit with the highest baseline %DS, exhibit lesser total plaque and necrotic core volumes (p < 0.05 for both). (E) Between-patient controls, using the lesion with the highest % DS in the control patient, exhibit lesser non-calcified plaque components (p = 0.04), but no decrease in calcified plaque volume (p = NS). ACS = acute coronary syndrome; coronary CTA = coronary computed tomographic angiography; %DS = percent diameter stenosis; HRP = high-risk plaque; NS = nonsignificant. CONCLUSIONS Although ACS increases with %DS, most precursors of ACS cases and culprit lesions are nonobstructive. Plaque evaluation, including HRP, PB, and plaque composition, identifies high-risk patients above and beyond stenosis severity and aggregate plaque burden. (J Am Coll Cardiol 2018;71:2511–22) Published by Elsevier on behalf of the American College of Cardiology Foundation. ## **PERSPECTIVES** competency in Medical Knowledge: Although ACS are typically associated with stenotic coronary lesions, precursors of culprit lesions are commonly nonobstructive. HRP characteristics, plaque composition, and cross-sectional PB as assessed by coronary CTA can predict the development of ACS independently of stenosis severity and aggregate PB. **TRANSLATIONAL OUTLOOK:** These characteristics of nonstenotic but high-risk coronary artery lesions should be investigated further in cohort studies and in prospective heart attack prevention trials.