

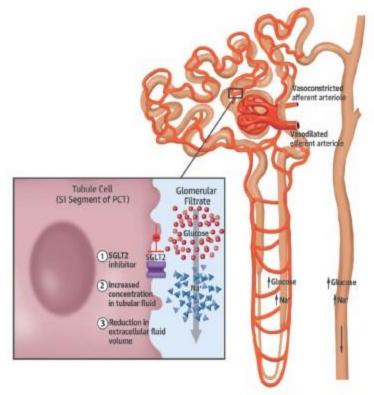
DECLARE - TIMI 58

Stephen D. Wiviott, MD

for the DECLARE – TIMI 58 Investigators

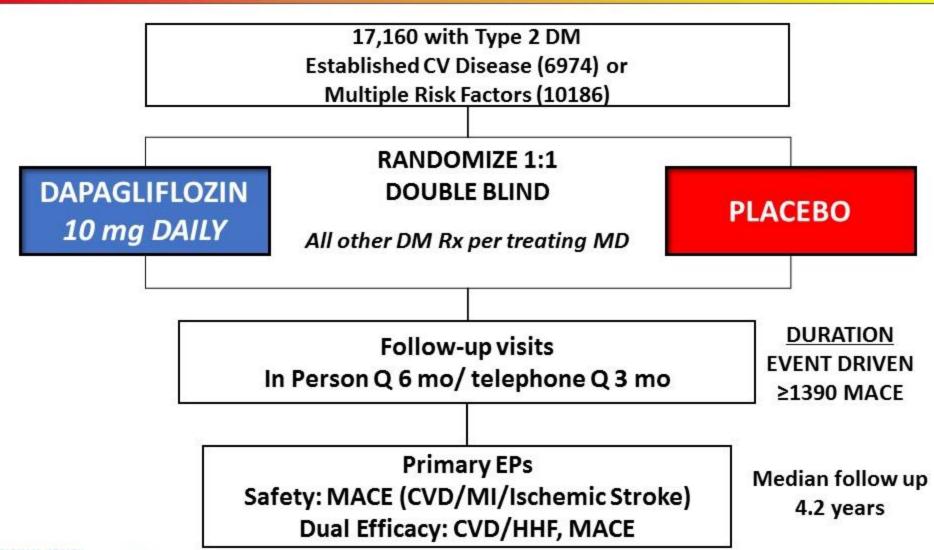
American Heart Association, Scientific Sessions

November 10, 2018



Background

- Patients with type 2 DM are at high risk for development of atherosclerotic CV events and heart failure.
- Dapagliflozin is a selective SGLT2 inhibitor which blocks glucose and sodium resorption in the kidney, and thereby ↓ blood sugar, BP & weight.
- Prior CV outcomes trials with other SGLT2i
 have shown reductions in CV and renal
 events predominantly in secondary
 prevention patients, though questions have
 been raised related to amputation, stroke
 and DKA.



Trial Design

Enrollment Criteria

Diagnosis of T2DM, HbA1c 6.5-12%, CrCl ≥60 ml/min

AND

Established ASCVD (Secondary prevention)

Ischemic heart disease

Cerebrovascular disease

Peripheral Artery Disease

Or

Multiple risk factors for ASCVD (Primary prevention)

Men \geq 55 yrs and women \geq 60 yrs with at least one additional risk factor:

Dyslipidemia

Hypertension

Current Tobacco use

Analytic Plan

MACE

Non-inferiority (Upper Bound CI <1.3): 1-sided α = 0.023

If non-inferior ...

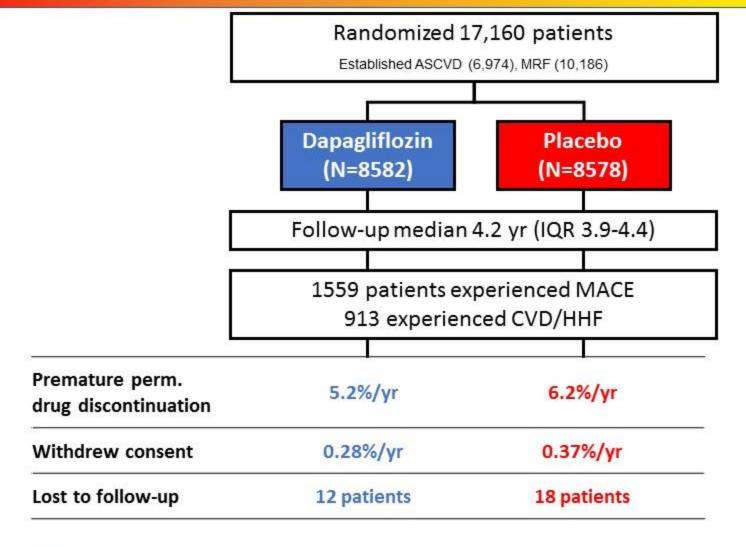
Superiority for Dual Primary Efficacy Endpoints (MACE & CVD/HHF) test each simultaneously with 2-sided α = 0.0231

if either significant, may recycle α to test other at 0.0462

 $\alpha = 0.0462$

Renal composite 40% \downarrow eGFR, ESRD, Renal or CV death $\alpha=0.0462$ If significant ...

All-cause mortality



Follow-up

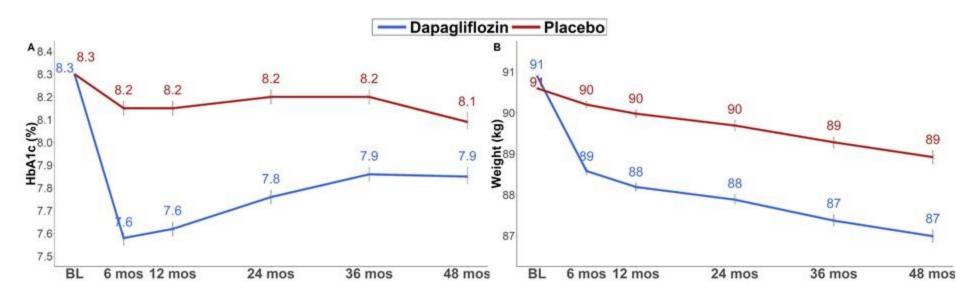
Baseline Characteristics

	Full Trial Cohort		
	N = 17160		
Age, yrs, Mean (SD)	64 (7)		
Female Sex (%)	37		
BMI, Mean (SD)	32 (6)		
Duration of T2DM, yrs, Median (IQR)	11 (6, 16)		
HbA1c (%), Mean (SD)	8.3 (1.2)		
eGFR (CKD-EPI), Mean (SD)	85 (16)		
Region (%): North America	32		
Europe	44		
Latin America	11		
Asia Pacific	13		
Established CV Disease (%)	41		
History of Heart Failure (%)	10		

Baseline Characteristics: Medication Use

	Full Trial Cohort N = 17160
Glucose lowering therapies (%)	
Metformin	82
Insulin	41
Sulfonylurea	43
DPP4i	17
GLP-1RA	4
Cardiovascular therapies (%)	
Antiplatelet	61
ACEI/ARB	81
Beta-blocker	53
Statin or Ezetimibe	75

Cardiovascular Risk Factors



HbA1c

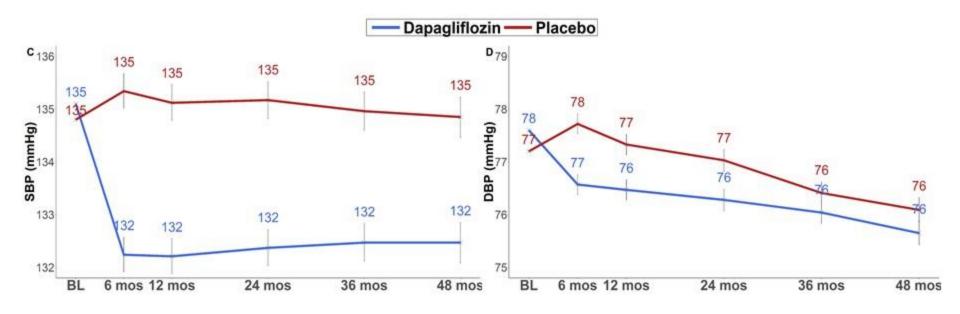
LSM Difference 0.42% (95% CI 0.40-0.45)

Weight

LSM Difference 1.8 kg (95% CI 1.7-2.0)

All P-values (except BL) < 0.001

All P-values (except BL) < 0.001


Cardiovascular Risk Factors

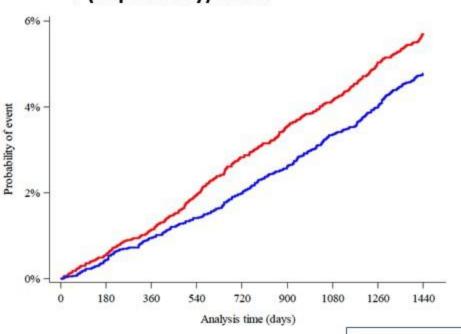
SBP
LSM Difference 2.7 mmHg (95% CI 2.4-3.0)

DBP

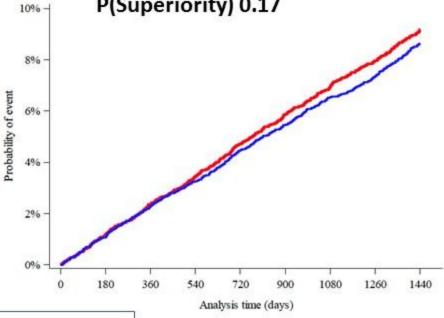
LSM Difference 0.7mmHg (95% CI 0.6-0.9)

All P-values (except BL) < 0.001

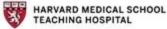
All P-values (except BL) < 0.001



Primary Endpoints


CVD/HHF

4.9% vs 5.8% HR 0.83 (0.73-0.95) P(Superiority) 0.005

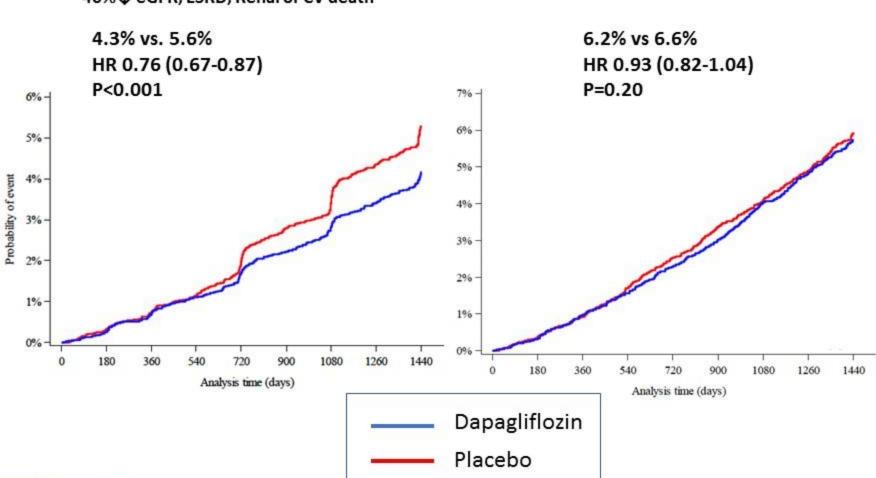

MACE

8.8% vs 9.4% HR 0.93 (0.84-1.03) P(Noninferiority) <0.001 P(Superiority) 0.17

Dapagliflozin
Placebo

BRIGHAM HEALTH

WOMEN'S HOSPITAL


Secondary Endpoints

All-Cause Mortality

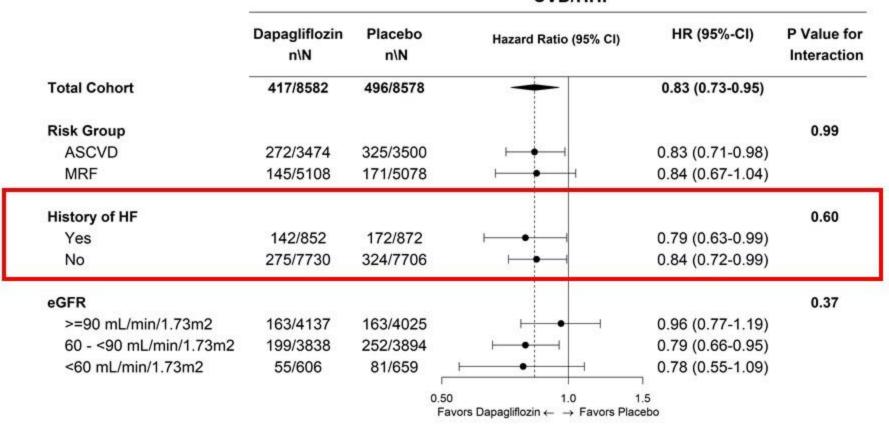
Renal Composite EP

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Endpoints and Components

azard Ratio (95% (CI) P value
0.83 (0.73-0.95)	0.005*
0.93 (0.84-1.03)	← <0.001° 0.17*
0.76 (0.67-0.87)	· · ·
0.93 (0.82-1.04)	⊢ •••
0.73 (0.61-0.88)	⊢
0.89 (0.77-1.01)	⊢
1.01 (0.84-1.21)	⊢
0.98 (0.82-1.17)	⊢
0.88 (0.73-1.06)	· • • • • • • • • • • • • • • • • • • •
0.53 (0.43-0.66)	⊢ •
0	1.53 (0.43-0.66)

Primary Efficacy Endpoints DECLARE by Presence of ASCVD vs MRF

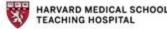

Dapagliflozin Events per 1000 pt years	Placebo Events per 1000 pt years	Hazard Ratio (95% CI)		P value for interaction
12.2	14.7	0.83 (0.73-0.95)	•	0.99
19.9	23.9	0.83 (0.71-0.98)	⊢ •−1	
7.0	8.4	0.84 (0.67-1.04)	-	
22.6	24.2	0.93 (0.84-1.03)	•	0.25
36.8	41.0	0.90 (0.79-1.02)	⊢	
13.4	13.3	1.01 (0.86-1.20)	<u> </u>	_
		The state of the s		1.5
	1000 pt years 12.2 19.9 7.0 22.6 36.8	Events per 1000 pt years Events per 1000 pt years 12.2 14.7 19.9 23.9 7.0 8.4 22.6 24.2 36.8 41.0	Events per 1000 pt years Events per 1000 pt years Hazard Ratio (95% CI) 12.2 14.7 0.83 (0.73-0.95) 19.9 23.9 0.83 (0.71-0.98) 7.0 8.4 0.84 (0.67-1.04) 22.6 24.2 0.93 (0.84-1.03) 36.8 41.0 0.90 (0.79-1.02) 13.4 13.3 1.01 (0.86-1.20)	Events per 1000 pt years Events per 1000 pt years Hazard Ratio (95% CI) 12.2 14.7 0.83 (0.73-0.95) 19.9 23.9 0.83 (0.71-0.98) 7.0 8.4 0.84 (0.67-1.04) 22.6 24.2 0.93 (0.84-1.03) 36.8 41.0 0.90 (0.79-1.02) 13.4 13.3 1.01 (0.86-1.20)

Effect on CVD/HHF in Key Subgroups

CVD/HHF

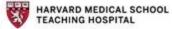
Key Safety Events

	Dapagliflozin (%)	Placebo (%)	Between Group Comparison
Treatment emergent SAE	34.1	36.2	P<0.001
Treatment emergent AE leading to drug D/C	8.1	6.9	P=0.01
Major Hypoglycemia	0.7	1.0	P=0.02
Diabetic Ketoacidosis* (DKA)	0.3	0.1	P=0.02
Amputation	1.4	1.3	NS
Fracture	5.3	5.1	NS
Acute Kidney Injury	1.5	2.0	P=0.002
Symptoms of volume depletion	2.5	2.4	NS
Genital infection (SAE, DAE)	0.9	0.1	P<0.001
Urinary tract infection (SAE, DAE)	1.5	1.6	NS
Fournier's Gangrene	0.01	0.08	NS
Cancer of Bladder*	0.3	0.5	P=0.02


Summary

In DECLARE – TIMI 58, the largest SGLT2i trial, which included a broad representation of 1° and 2° prevention patients:

- Dapagliflozin reduced CVD/HHF, was safe with regard to MACE and appeared to reduce renal events
 - ↓ CVD/HHF was consistent regardless of baseline ASCVD or HF
- Dapagliflozin was safe and generally well-tolerated
 - ↑ Genital infections & DKA
 - No difference in: amputation, fracture, or stroke
 - ↓ Hypoglycemia, AKI, bladder Ca



Meta-Analysis of CVOTs: DECLARE MACE by Presence of ASCVD

MACE	Treatment Events per 1000 pt-yrs	Placebo Events per 1000 pt-yrs			HR [95% CI]
Atherosclerotic Cardio	vascular Disease:				
EMPA-REG OUTCOME	37.4	43.9	⊢		0.86 [0.74, 0.99]
CANVAS Program	34.1	41.3	⊢ ■		0.82 [0.72, 0.95]
DECLARE-TIMI 58	36.8	41	⊢ ■		0.90 [0.79, 1.02]
FE Model for ASCVD (P-	value = 0.0002)				0.86 [0.80, 0.93]
Multiple Risk Factor:					
CANVAS Program	15.8	15.5	ı =	—	0.98 [0.74, 1.30]
DECLARE-TIMI 58	13.4	13.3	· •	-1	1.01 [0.86, 1.20]
FE Model for MRF (P-val	ue = 0.98)				1.00 [0.87, 1.16]
	Test for So	ubgroup Difference	s p=0.05		
		0.50	0.75 Hazard Ratio	1.25	1.50

Meta-Analysis of CVOTs: **DECLARE***CVD/HHF by Presence of ASCVD **Registration Effect on Cardiovascular Events***

CVD/HHF	Treatment Events per 1000 pt-yrs	Placebo Events per 1000 pt-yrs			HR [95% CI]
Atherosclerotic Cardio	vascular Disease:				
EMPA-REG OUTCOME	19.7	30.1	⊢		0.66 [0.55, 0.79]
CANVAS Program	21	27.4	⊢		0.77 [0.65, 0.92]
DECLARE-TIMI 58	19.9	23.9	⊢		0.83 [0.71, 0.98]
FE Model for ASCVD (P-	value <0.0001)				0.76 [0.69, 0.84]
Multiple Risk Factor:					
CANVAS Program	8.9	9.8	-	—	0.83 [0.58, 1.19]
DECLARE-TIMI 58	7	8.4	⊢		0.84 [0.67, 1.04]
FE Model for MRF (P-val	ue = 0.0634)				0.84 [0.69, 1.01]
	Test for Si	ubgroup Differe	nces p=0.41		
		0.50	0.75 Hazard Ratio	1.25	1.50

Conclusions

Now with the context of 3 large CVOTs:

- SGLT2i have moderate benefits on atherosclerotic MACE that appear confined to those with established ASCVD
- SGLT2i have robust effects on reducing the risk of heart failure and renal outcomes which do not appear dependent on baseline atherosclerotic risk or prior HF

These data with dapagliflozin from DECLARE - TIMI 58 extend the benefit of SGLT2i to a broader population of patients for primary and secondary prevention